
Techne: Towards a New Generation of Requirements Modeling Languages
with Goals, Preferences, and Inconsistency Handling

Ivan J. Jureta
FNRS & Louvain School of Management

University of Namur
ivan.jureta@fundp.ac.be

Alex Borgida
Department of Computer Science

Rutgers University
borgida@cs.rutgers.edu

Neil A. Ernst, John Mylopoulos
Department of Computer Science

University of Toronto
jm,nernst@cs.toronto.edu

Abstract—Techne is an abstract requirements modeling lan-
guage that lays formal foundations for new modeling languages
applicable during early phases of the requirements engineering
process. During these phases, the requirements problem for
the system-to-be is being structured, its candidate solutions
described and compared in terms of how desirable they are
to stakeholders. We motivate the need for Techne, introduce it
through examples, and sketch its formalization.

Keywords-Requirements models, goal-oriented requirements
engineering, requirements modeling languages

I. INTRODUCTION

Three intertwined questions remain among the central ones
in Requirements Engineering (RE) for at least three decades
now (e.g., [11]): (1) What information should be elicited
from the stakeholders of the system-to-be? (2) What models
should be used to represent the elicited information? (3)
What kinds of reasoning should be performed over these
models?

The initial response was to apply formal specification
methods (FSMs) [4], [25] made for the design of the system-
to-be, such as VDM [2], Larch [24], Z [20], B [1], Alloy
[13]. As interest shifted from software and hardware alone
to sociotechnical systems, it was recognized that RE must
account for the variously (im)precise and (in)consistent
expectations of the stakeholders, including the future users,
owners, and so on. An understanding of the functions of
the system-to-be could only be sought after beliefs, desires,
and intentions of stakeholders had been grasped to a feasible
extent. This led to a distinction between the early and the
late phase of RE; FSMs remain applicable to the latter.

For the early phase of RE, seminal answers took the form
of requirements modeling languages (RMLs) and typically
included (1) an ontology of requirements stating the infor-
mation to elicit, relevantly describing optative properties and
behaviors of the system-to-be and its operational environment,
(2) modeling primitives for the concepts and relations of the
ontology, the instances of which together form models to
record the elicited information, and (3) often automated
methods that could be applied to the models in order to
answer questions of methodological interest, such as if a
model is consistent, or if the properties and behaviors it

attributes to the system would allow the latter to satisfy its
designated purpose. Early-phase RMLs such as RML [10],
ERAE [6], KAOS [5] and i* [26] often served as the starting
point for further research on various issues of interest in RE.

The answers that an RML gives to the three key questions
reflect its respective fundamental assumptions about the
central concepts relevant for the early phase of RE, the very
problem — the requirements problem — that RE aims to
resolve during this phase and within the broader process of
systems engineering, of how the problem can and should
be resolved, and of when it is resolved. The concept of
system or stakeholder goal (to represent desires) became
central, as KAOS made clear. i* went one step further with
its focus for how various intentional agents/stakeholders are
interdependent on each other and the system-to-be for the
realization of their individual and joint goals.

However, as argued in [16], the core ontology for re-
quirements and the requirements problem [29] — which
are implicit in state-of-the-art RMLs such as KAOS and i*
— are limited in several respects that are critical for the
successful performance of early-phase RE for contempo-
rary systems. The CORE ontology for requirements [16]
recognized that in addition to goals and tasks, different
stakeholders have different preferences over requirements,
that they are interested in choosing among candidate solutions
to the requirements problem, that potentially many candidate
solutions exist (as in the case of service-/agent-oriented
systems, where different services/agents may compete in
offering the same functions), and that requirements are not
fixed, but change with new information from the stakeholders
or the operational environment. In absence of preferences, it
is (i) not clear how candidate solutions to the requirements
problem can be compared, (ii) what criteria (should) serve
for comparison, and (iii) how these criteria are represented in
requirements models. New concepts suggested in CORE led to
the revised formulation of the requirements problem: Given
the elicited domain assumptions, goals, quality constraints,
softgoals, tasks, some of which are optional, mandatory,
and/or preferred over others, the engineer ought to find
tasks and domain assumptions which satisfy all mandatory
goals, quality constraints, and ideally also satisfy at least

some of the preferred and/or optional goals and quality
constraints. A candidate solution to this problem will be
a consistent set of tasks and domain assumptions which
satisfy all mandatory goals and quality constraints. Candidate
solutions are compared on the basis of which preferred
and/or optional goals and quality constraints they satisfy. New
concepts and the revised formulation of the requirements
problem have created the need for new RMLs to be designed
to accommodate these concepts and to resolve the revised
problem.

The main objective of this paper is to introduce Techne,
an abstract RML designed as the core on which to build new
RMLs. By core is meant a minimal set of components which
are argued as necessary to an RML, if it is to respond to
the issues raised above: to model goals, softgoals, quality
constraints, domain assumptions, and tasks used to define
the requirements problem for a specific system-to-be, to
define candidate solutions, to model preferences and optional
requirements, and use them as criteria for the comparison
of candidate solutions. The simplest way to make an RML
from Techne is to add a visual syntax, e.g., a diagrammatic
notation, and map its syntactic elements to those of Techne’s
syntax. Making an RML from Techne ensures that the RML
is equipped to model instances of the concepts from the
CORE ontology for requirements, then identify and compare
candidate solutions to the requirements problem. Techne
is a formal language. Its semantic domain is made up of
structures called candidate solutions to the requirements
problem, which are consistent sets of requirements satisfying
some additional properties. Candidate solutions are found
via paraconsistent and non-monotonic reasoning. Reasoning
is paraconsistent because an inconsistent model should not
allow us to conclude the satisfaction of all requirements
therein; it is non-monotonic in that prior conclusions drawn
from a model may be retracted after new requirements are
introduced.

The paper reviews the features of Techne and sketches its
formalization via realistic examples of manageable size from
an online music-on-demand system (§II). Related work is
presented (§III), limitations of Techne are discussed (§IV),
and conclusions and pointers for future work are given (§V).

II. FEATURES OF TECHNE

At the very outset of the RE process — the early phase —
the first interactions with the stakeholders result in variously
(im)precise and (in)consistent information about the system-
to-be and its operational environment. To be applicable to
the early phase, an RML ought to handle the classification
and relation of this information, its use in modeling in order
to formulate the requirements problem for the system-to-be,
and the analysis/reasoning on models to answer questions
asked towards the resolution of the requirements problem.
Techne offers facilities to support each of these tasks; we
review them in turn in the rest of this section.

A. Classification

Techne builds on the CORE ontology [16] for classifying
elicited requirements: the overall idea is to distinguish in a
piece of information the psychological mode from the rest
of the statement, then establish which CORE concept the
statement instantiates, and this based on the psychological
mode (belief, desire, and so on) and on some properties of
the statement itself. Stakeholder desires become instances of
the goal concept, if they refer to conditions, the satisfaction
of which is desired, binary and verifiable (e.g., “Deliver
music to clients via an online audio player”). If desires
constrain desired values of non-binary measurable properties
of the system-to-be, then they are instances of the quality
constraint concept (e.g., “The bitrate of music delivered
via the online audio player should be at least 128kb/s”).
When desired values are vaguely constrained and on not
necessarily directly measurable properties, they instantiate
the softgoal concept (e.g., “Buffering before music starts in
the audio player should be short”). Stakeholder intentions
to act in specific ways become instances of tasks to be
accomplished either by the system-to-be, or in cooperation
with it, or by stakeholders themselves. Beliefs are instances
of domain assumption, stating conditions within which the
system-to-be will be performing tasks in order to achieve the
goals, quality constraints, and satisfy as best as feasible the
softgoals. Stakeholder evaluations of requirements — their
preferences for some goal (or otherwise) to be satisfied rather
than another, or that some must be satisfied, while others
are optional — result in relations over requirements (cf.,
§II-B) subsequently used to compare candidate solutions to
the requirements problem.

To solve the requirements problem, it is necessary that
the categorized requirements be recorded, refined, expanded
by iteratively acquiring new ones. To record requirements,
Techne maps statements to labels, thereby sorting them. Let
p, q, r (indexed or primed as needed) refer to statements, and
g(), q(), s(), t(), and k() are labels for, respectively, goals,
quality constraints, softgoals, tasks, and domain assumptions.
A labeling function simply follows the rules of CORE recalled
above: if p is an instance of goal, then we write g(p), if q
is an instance of quality constraint, we write q(q), and so on.
Hereafter, requirement is synonym for any labeled statement.

B. Relation

There are five relations on requirements in Techne: (i)
inference, (ii) conflict, (iii) preference, (iv) is-mandatory, and
(v) is-optional relations. The first two are used to describe
and distinguish between candidate solutions, the last three
to compare candidate solutions.

1) Inference: When a requirement is the immediate
consequence of another set of requirements, the former
is called the conclusion, the latter the premises, and they
stand related through the inference relation. Say there are
two goals, g(r1) and g(r2), with r1 for “Music plays in

a player integrated in the web page” and r2 for “Player
has all standard functionalities for listening music”. If there
is also a domain assumption k(γ1), with γ1 for “If r1
and r3 then music is delivered to clients via an online
audio player”, we can conclude the goal g(r3), with r3
for “Deliver music to clients via an online audio player”.
From two goals and an assumption stating a conditional,
the conclusion is another goal. Reading this backwards,
from g(r3) to the three premises, resemblance to refinement
becomes clear: the inference relation can be used to connect
the refined requirement to the requirements that refine it.
The refinement of a goal by other goals has been a salient
feature of KAOS, while other RMLs had their own proxies
(e.g., task decomposition in i*) of the refinement relation.
The intuitive meaning of these relations is that if the set of
more precise requirements is satisfied, then the less precise
requirements are assumed satisfied. Techne considers that,
say, goal refinement and task decomposition ask basically the
same question: What more precise requirements should be
satisfied in order to assume that the less precise — refined,
decomposed — requirement is satisfied as well? Instead
of relating less precise to more precise requirements by a
refinement or decomposition relation, Techne generalizes
these via the inference relation. Note that in both these cases
the form of the rules k(φ) is a definite Horn clause.

2) Conflict: Contradictory/inconsistent requirements can-
not be in the same candidate solution, or equivalently, are in
conflict. The conflict relation stands between all members
(two or more) of a minimally inconsistent set of requirements.
That a candidate solution should be conflict-free means that
conflict relations play a crucial role in distinguishing between
consistent sets of requirements, and if these sets satisfy some
additional properties, in distinguishing between candidate
solutions. To say that n requirements are in direct conflict,
another piece of information is needed, namely an implication
which explicitly states that if these requirements together
hold, then they imply an inconsistency: e.g., to say that g(r1)
and k(r4) are in conflict, where r4 is for “The user cannot
download the audio files”, it is necessary to say that the
two are contradictory, which is done via an assumption: e.g.,
k(γ2), with γ2 for “g(r1) and k(r4) are contradictory”.

3) Preference: Stakeholder evaluations of requirements
convey that not all requirements are equally desirable. E.g.,
perhaps “The bitrate of music delivered via the online audio
player should be at least 256kb/s” is strictly preferred to
“The bitrate of music delivered via the online audio player
should be at least 128kb/s”. If a requirement is strictly more
desirable than another one, then there is a preference relation
between them and by strictly, we mean that they cannot be
equally desirable.

4) Is-mandatory: Evaluation is not only comparative, as
in the case of preference: individual requirements can be
qualified in terms of desirability regardless of other require-
ments. The is-mandatory relation on a requirement indicates

that the requirement must be satisfied, or equivalently, that
a conflict-free set of requirements which does not include
that requirement cannot be a candidate solution. If k(r4)
is mandatory, then every candidate solution will include it,
and exclude all requirements contradicting k(r4) (because a
candidate solution cannot include conflicts).

5) Is-optional: In contrast to the is-mandatory relation,
the is-optional relation on a requirement indicates that it
would be desirable for a conflict-free set of requirements to
include that requirement, but that set can still be a candidate
solution if it fails to include the optional requirement; e.g.,
if k(r4) is optional, then a conflict-free set of requirements
which does not contain k(r4) can still be a candidate solution.
Stated otherwise, if there are two candidate solutions which
differ only in that one has an optional requirement and the
other not, then the former is strictly more desirable than the
latter.

C. Modeling

Requirements and relations between them are recorded
in graphs called r-nets. Each requirement and each relation
obtains its own node in an r-net, while edges are unlabeled
and directed, having contextual informal interpretation: how
one reads/calls an edge depends on which requirements and
relations it connects (see below). Note already that, as an
r-net contains all requirements and all relations for a system-
to-be: the r-net thus defines the requirements problem for
a given system-to-be, and includes all (if any) candidate
solutions to the problem, so that it is by the analysis of the
r-net that candidate solutions are sought (cf., §II-D).

1) Modeling Inference: To show an inference relation, put
in the r-net a node (I) for the inference relation, then a line
from every premise requirement node to I, and a line from
I to the conclusion requirement node.

Example II.1. Assume the aim is to build a system that would
deliver music on-demand: a user visits a website, chooses
songs from a database, and can play them in the audio player
on the website. Let g(p), with p for “Generate revenue from
the audio player”. We can refine it with two goals and a
quality constraint: g(p1), g(p2) and q(p3), where p1 is for
“Display text ads in the audio player”, p2 for “Target text ads
according to users’ profiles” and p3 for “Maintain the player
free to all users”. To conclude g(p) from g(p1), g(p2) and
q(p3), we need to assume that k(φ1), with φ1 for “if g(p)
from g(p1), g(p2) and q(p3), then g(p)”. Figure 1(a) shows
the r-net with this refinement. �

2) Modeling Conflict: To show a conflict between require-
ments, put a node for each one of the conflicting requirements
in the r-net, a conflict node (C), and a line from every
requirement node in the conflicting set to the conflict node.

Example II.2. (Contd. Example II.1) We start with g(q) with
q for “Charge subscription to users”, and add k(φ2), with
φ2 for “if g(q) then g(p)”. We then refine g(q) onto g(q1),

(a) Inference (I) in Example II.1.

(b) Con�ict (C) is highlighted, from Example II.2.

k(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

k(φ1)
g(p1)
g(p2)
q(p3)

g(p)I

(c) Preference (P) is highlighted, from Example II.3.

(d) Is-mandatory (M) and is-optional (O) are highlighted,
from Example II.4.

k(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

P

(e) So�goal approximation is highlighted (Example II.5).

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

P

I

q(p4) O

k(φ4)

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

P

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

Generate revenue from the audio player.
Display text ads in the audio player.
Target text ads according to users' pro�les.
Maintain the player free to all users.
Listen to music in an average of no more than three clicks.
It is easy for new users to access audio content.
An average of ten clicks are needed to a new user to get
to audio content.
Charge subscription to users.
Music database is restricted to subscribers.
Users can subscribe.
Music player is available to subscribers only.

p
p1
p2
p3
p4
p5
p6

q
q1
q2
q3

(f) Symbols and corresponding statements used in Figures 1(a)-1(e).

Figure 1. R-nets from Examples II.1–II.5.

g(q2), and g(q3), with q1 for “Music database is restricted
to subscribers”, q2 for “Users can subscribe” and q3 for
“Music player is available to subscribers only”. This requires
the assumption k(φ3), φ3 for “If g(q1), g(q2), and g(q3),
then g(q)”. It appears that “we cannot both maintain the
player free to all users (q(p3)) and make music available
to subscribers only (g(q3))” which ψ1 abbreviates, so we
add k(ψ1). We thereby have the conflict between q(p3) and
g(q3), shown in Figure 1(b). �

3) Modeling Preferences: Preference is a binary relation:
if a requirement x is preferred to requirement y, add a
preference node (P), and draw a line from the preferred
requirement (x) to the preference node (P), and from the
preference node (P) to the less preferred requirement (y).

Example II.3. (Contd. Example II.2) The r-net in Figure 1(b)
includes two refinements of g(p). The conflict C indicates
that these are two alternative refinements, as they cannot
appear together in a candidate solution. The preference in
Figure 1(c) says that g(q3) is strictly preferred to q(p3). This
preference becomes one (of potentially many) criteria for
the comparison of candidate solutions: if this were the only
criterion, then we would choose the candidate solution which
includes g(q3) instead of another which includes q(p3). �

4) Modeling Mandatory and Optional Relations: Both the
is-mandatory and is-optional relations are unary. To say in an
r-net that a requirement is mandatory, add a node (M) for the
is-mandatory relation, and a line from the requirement node
to the is-mandatory node. To state instead that a requirement
is optional, add a node (O) for the is-optional relation, and a
line from the requirement node to the is-optional node.

Example II.4. (Contd. Example II.3) If every solution must
include g(p), then we add the node M to the r-net in Figure
1(c) and a line from g(p) to M, as shown in Figure 1(d).

To illustrate the use of the is-optional relation, suppose
that maintaining the player free to all users (q(p3)) will allow
new users to listen to music in an average of no more than
three clicks through the audio service (as they do not need
to register or provide their billing details); we denote q(p4)
the latter quality constraint. We add q(p4) as a node to the
r-net, along with the assumption k(φ4), with φ4 for “if q(p3),
then q(p4)”, and thus an inference relation. Let q(p4) be
optional: to make it so in the r-net, we connect it to the node
O. If we consider the r-net in Figure 1(d), it is no longer
obvious which of the two refinements is more desirable than
the other: if a candidate solution includes g(q3), then it will
not contain q(p4), but will have the preferred g(q3); if a
candidate solution includes q(p3), then it will have q(p4),
but not the preferred g(q3). �

5) Softgoal Approximation: As softgoals vaguely con-
strain values of properties that are not necessarily directly
measurable, every softgoal ought to be approximated in
an r-net. A set of requirements can be an approximation

of a softgoal if it is assumed that, once its members are
satisfied, the softgoal will be satisfied to some extent. As
different approximations may satisfy the same softgoal to
different extents, preference relations can be added between
the members of different approximations. These preferences
let us compare approximations in terms of how well one
satisfies the softgoal relative to others.

Example II.5. (Contd. Example II.4) We introduce the
optional softgoal s(p5), with p5 for “It is easy for new
users to access audio content” into the r-net from Figure
1(d). There are no universal criteria that tell us what “easy”
precisely means in the context of this system-to-be. There
are thus different ways to approximate s(p5). One of them is
to say that the smaller the average number of clicks needed
to a new user to access audio content (computed over some
number of sessions and for a given focus group), the easier
it is to access that content. We can introduce at least two
quality constraints, one being q(p4) and another q(p6), with
p6 for “An average of ten clicks are needed to a new user to
get to audio content”, with corresponding assumptions k(φ5)
and k(φ6), with φ5 for “if q(p4), then s(p5)” and φ6 for “if
q(p6), then s(p5)”. A preference is added, to indicate that
the approximation by q(p4) is preferred to the approximation
by q(q6). Finally, we abbreviate “q(p4) cannot be satisfied
together with q(p6)” by ψ2, and add a conflict between q(p4)
and q(p6), along with the assumption k(ψ2). �

6) Modeling with Visual Syntax: Concrete RMLs (e.g.,
KAOS, i*) have a visual syntax as a diagrammatic notation
that aims to simplify the making and reading of requirements
models created with these languages. Techne is an abstract
RML as it has no visual syntax. To make a concrete RML out
of Techne, it would be necessary to add a visual syntax.

Example II.6. As a brief illustration of how this might
proceed, consider Figure 2, in which goals are shown to
be represented by rounded rectangles, while the refinement
relation is shown as a dark dot, connected to the refined
requirement and the requirements refining it. This second
case shows how the visual syntax can simplify the model,
since k(φ) can be inferred in the case of decomposition and
need not be drawn. �

≡g(p) p

k(φ)
g(p1)
g(...)
g(pn)

g(p)I ≡ p

p1

...

p1

Figure 2. An example of visual syntax for goals and the inference relation.

D. Analysis

Analysis in Techne should answer two questions: given an
r-net, (i) What are the candidate solutions to the requirements
problem in it? and (ii) What are the preferred and optional

requirements that each candidate solution contains? Example
II.7 informally presents how these answers are sought; we
then look into the formalization of the r-nets towards the
automation of analysis.

Example II.7. (Contd. Example II.5) A candidate solution
must be conflict-free, so that we are interested in conflict-
free subnets of the r-net in Figure 1(e). There are many
conflict-free subnets in Figure 1(e): e.g., g(p) taken alone is
a conflict-free subnet, as is the refinement shown in Figure
1(a). Since g(p) is itself a subnet of the said refinement, we
are more interested in the entire refinement than in any one
of its subnets alone. Stated otherwise, conflict-free/consistent
subnets can be ordered by the subset relation ⊆, and instead
of looking for all consistent subnets, those maximal with
regards to ⊆ are the most interesting ones. Figures 4(a) and
4(b) highlight two maximal consistent subnets in the r-net
from Figure 1(e). These are, however, not also candidate
solutions to the requirements problem, as each has goals
and quality constraints as source nodes (i.e., nodes without
incoming lines). Recall that we are interested in finding
tasks and domain assumptions which satisfy goals, quality
constraints, and softgoals. We can add hypothetical tasks
to the r-net in Figure 1(e) so that no source nodes are
goals, quality constraints, or softgoals. Figures 4(c) and 4(d)
highlight two maximal consistent subnets of the resulting r-
net. Each of these is a candidate solution, because (i) neither
has goals, quality constraints, or softgoals as source nodes,
and (ii) each includes the only mandatory requirement g(p).

Once we have found the candidate solutions, the question
is how do they compare? We can establish that the two
candidate solutions, denoted SA (the subnet highlighted in
Figure 4(c)) and SB (the subnet highlighted in Figure 4(d)),
have the following mandatory, optional, and preferred nodes:

• SA (i) has q(p4), is both an optional and a preferred
requirement; (ii) has s(p5) which is an optional re-
quirement; and (iii) has g(p) which is a mandatory
requirement.

• SB (i) has g(q3) which is a preferred node; (ii) has
s(p5), an optional requirement; and (iii) has g(p), a
mandatory requirement.

The following comparison table gives the summary:

P : g(q3) P : q(p4) O : q(p4) O : s(p5)

SA no yes yes yes
SB yes no no yes

Each column in the comparison table is a criterion for
the comparison of candidate solutions. How to rank the
candidates is beyond the scope of this paper. �

Automating the search for candidate solutions requires
that the elements of Techne discussed up to this point
obtain mathematically formal definitions. To sketch the
formalization, recall that a modeling language has four parts:

(i) an alphabet of symbols, (ii) rules of grammar to combine
symbols into expressions, (iii) a semantic domain with the
objects of interest to the purpose of the language, and (iv)
mappings from the symbols and expressions to the objects
in the semantic domain. The first and second components
are usually called syntax, the last two semantics.

1) R-net Alphabet: To draw r-nets, we used symbols for
(i) atomic statements (indexed/primed p, q, r), (ii) complex
statements (Greek letters) (iii) labels (k(), g(), q(), s(), t()),
(iv) relations (I, C, P, M, O), and (v) arrow-headed lines.

2) R-Net Grammar: Grammar is dictated by the CORE
ontology for the use of labels, and the arity of relations for
the use of relation symbols and lines. All allowed expressions
are shown in Figure 3, and every r-net is exactly the finite
set of elements shown in that figure.

k(p)
g(p)

q(p)
s(p)

t(p)
k(φ)

k(φ)x1(p1)
...

xm(pn)
xm+1(q)I

k(φ)x1(p1)
...

xm(pn)
C

xi(pj) O

xi(pj) M
xi(pj) xk(ph)P

Figure 3. Allowed expressions in an r-net.

In Figure 3, every p, q is an arbitrary atomic statement,
every φ an arbitrary complex statement, and every x an
arbitrary label. For I, φ abbreviates “if x1(p1) and . . . and
xm(pn), then xm+1(q)”; for C, φ is for “if x1(p1) and . . . and
xm(pn), then contradiction”. As every complex statement
refers to an assumption, it must have the label k().

3) Semantic Domain and Mapping: The elementary
objects in the semantic domain of r-nets are pieces of
information stating the properties of the system-to-be and its
operational environment and the inference, conflict, prefer-
ence, is-mandatory, and is-optional relations between them.
Atomic and complex statements in the alphabet refer/map
to these pieces of information, relation symbols map to
relations, while expressions refer to combinations of the two.
Following the statement of the requirements problem and
as we want to avoid contradictory solutions, a candidate
solution is information which is (i) not contradictory and
(ii) from which we can conclude that mandatory goals and
quality constraints are satisfied.

4) Proof-Theoretic Characterization of Candidate Solu-
tions: To find candidate solutions, we need to find their
counterparts in syntax, that is, those parts of r-nets which
map exactly to candidate solutions in the semantic domain. As
we will be comparing solutions after we find them, we leave
out the information for the comparison of candidate solutions
(the preference, is-mandatory, and is-optional relations). In
syntax, this means that we focus not on a given r-net, but
on its attitude-free variant: given an r-net R, to make its
attitude-free variant R̄, delete all P, M, and O nodes and

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

P

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)
g(q1)

k(φ3)

C

P

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

(a) A consistent (sub)net is highlighted.

(b) Another consistent (sub)net is highlighted.

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)

g(q1) k(φ3)

C

P

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

t(r1) t(r2) t(r3)

I I I

t(r4)

I k(γ4) k(γ3)

k(γ1)

k(γ2)

t(r5) t(r6)

I II k(γ5)k(γ6) k(γ7)

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)

g(q1) k(φ3)

C

P

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

t(r1) t(r2) t(r3)

I I I

t(r4)

I k(γ4) k(γ3)

k(γ1)

k(γ2)

t(r5) t(r6)

I II k(γ5)k(γ6) k(γ7)

(c) Candidate solution r-net A is highlighted.

(d) Candidate solution r-net B is highlighted.

Figure 4. Consistent subnets and candidate solution r-nets in Example II.7.

all lines entering and leaving from these nodes from R. R̄
contains only the atomic and complex statements, and the
inference and conflict relations.

An R̄ can be seen as a set of proofs. To do so, we observe

g(p1) g(p2) q(p3) g(p1) ∧ g(p2) ∧ q(p3) → g(p)

g(p)

g(q1) g(q2) g(q3) g(q1) ∧ g(q2) ∧ g(q3) → g(q)

g(q)

g(q) g(q) → g(p)

g(p)

q(p3)

⊥

g(q3) q(p3) ∧ g(q3) → ⊥

Figure 5. The R̄ from Figure 1(b) rewritten as four proofs.

that our complex statements are sentences in the conditional
if-then form in which the fragment after the if references
requirements, while the one after then references either a
single requirement, or contradiction (cf., Examples II.1–II.5).
We rewrite every complex statement φ in k(φ) as a formula
with conjunction and implication: every φ is such that either
φ ≡

∧n
i=1 pli → pl, or φ ≡

∧n
i=1 pli → ⊥, where every

pl is some requirement (e.g., pl ≡ g(q)) and ⊥ refers to
logical inconsistency. Figure 5 shows the sentences obtained
by applying the said rules on the R̄ in Figure 1(b).

Attitude-free r-nets are sets of proofs of the formal system
in which the atoms pl of the alphabet are symbols for
requirements (e.g., g(p)), the only allowed expressions are∧n
i=1 pli → pl and

∧n
i=1 pli → ⊥, and the only rule of

inference is modus ponens. Given a set of such requirements
and expressions denoted S̄ and x ∈ {pl,⊥}:

1) S̄ |vτ pl if pl ∈ S̄, or
2) S̄ |vτ x if ∀1 ≤ i ≤ n, S̄ |vτ pli

and k(
∧n
i=1 pli → x) ∈ S̄.

The consequence relation |vτ is sound w.r.t. standard entail-
ment in propositional logic, but is incomplete in two ways:
it only considers deducing positive atoms, and no ordinary
proofs based on arguing by contradiction go through, thus
being paraconsistent.

The consequence relation leads us to the following concep-
tion of the candidate solution concept: Given an R with all
of its domain assumptions in the set K, tasks in T, goals in
G, quality constraints in Q, and softgoals in S, a set of tasks
T∗ and a set of domain assumptions K∗ are a candidate
solution to the requirements problem of R if and only if (i)
K∗ and T∗ are not inconsistent, (ii) K∗,T∗ |vτ G∗,Q∗, where
G∗ ⊆ G and Q∗ ⊆ Q, (iii) G∗ and Q∗ include, respectively,
all mandatory goals and quality constraints, and (iv) all
mandatory softgoals are approximated by the consequences
of K∗ ∪ T∗, so that K∗,T∗ |vτ SM, where SM is the set of
mandatory softgoals.

The candidate solution concept leads us in turn to a more
precise formulation of the requirements problem: Given an r-
netR, find its candidate solutions. Once candidates are found,
the comparison table can be constructed in the straightforward
way so that they can be compared. It is beyond the scope
of this paper to give guidelines on how to rank candidates

Mk(φ1)
g(p1)
g(p2)
q(p3)

g(p)I I

k(φ2)

g(q)

I

k(ψ1)

g(q3)
g(q2)

g(q1) k(φ3)

C

I

q(p4) O

k(φ4)

I

s(p5)

I

q(p6)

O

CP

k(ψ2)

t(r1) t(r2) t(r3)

I I I

t(r4)

I k(γ4) k(γ3)

k(γ1)

k(γ2)

t(r5) t(r6)

I II k(γ5)k(γ6) k(γ7)

Figure 6. Members of T∗ and K∗.

on the basis of the comparison table. Figure 6 highlights the
members of these two sets and thus a candidate solution for
the r-net from Example II.7. Note that Figures 4(c) and 4(d)
highlight candidate solutions and all of their consequences.
We give elsewhere [14] further details on the formalization
of r-nets and candidate solutions.

A note on expressiveness: observe that if we treat the
pls as atomic propositions, then an r-net is a Horn theory
(every formula has at most one positive atom), which is
known to be less expressive than full propositional logic, let
alone predicate logic. Among others, there is no provision
for world knowledge that is disjunctive (e.g., composite pl
like p ∨ q), but we can express exclusive disjunction (e.g.,
in Figure 1(b), g(p) is refined by either g(q) or by the
conjunction of g(p1), g(p2), and g(p3)). There is also no
provision for inference nodes that might use lemmas as k(φ),
which might lead to case-based reasoning. On the other
hand, if we consider only attitude-free r-nets, the problem
of finding candidate solutions can be reduced to variants of
solving non-standard reasoning problems in logic, such as
abduction (“What tasks are needed to ensure the mandatory
goals?”). Interestingly, it is known that Horn abduction is
one level lower in the polynomial complexity hierarchy than
abduction with full propositional logic, so our version of
Techne has lower expected computational cost — a typical
expressiveness/complexity tradeoff. Only extensive practical
experience in modeling will show whether more expressive
power is needed.

III. RELATED WORK

Surveys of RE research — from van Lamsweerde [21]
and Robinson et al. [19] in particular — confirm Zave and
Jackson’s [29] prior observation that the field had already in
the 1980s left behind simplistic approaches to understanding
what a system-to-be would do in favor of novel and varied
terminology, methods, languages, tools, and issues considered
to be critical. One constant is the observation that RMLs
play a central role in both research and practice of RE. It

does not require much knowledge of the field to see that
many research efforts that fall within Zave’s classification
[28] relate in one way or another to one or more RMLs;
e.g., elicitation of information from stakeholders, validation,
specification, checks for incompleteness and inconsistency,
all suppose that some model of requirements is available.

Despite the important position that RMLs play in RE, there
are no widely-accepted and precise standards that a formalism
must satisfy in order to be called an RML. The evolution of
RMLs seems to be one of testing of and converging on similar
ideas (e.g., we find refinement in one way or another in most
RMLs), rather then the design of formalisms following clear
desiderata. We highlight some of these key ideas in the rest
of this section and position Techne in relation to them.

Original RML: Highly developed languages for the
specification of the properties of a system-to-be — i.e.,
formal methods such as Z, VDM, Larch, temporal logic,
CSP, transition axioms, among others (e.g., [4], [25]) —
have been available alongside most RMLs, and they have
been used to perform some of the tasks of RMLs. That there
is more to writing requirements than functional specification
was recognized in the original RML [10] (hereafter ORML),
“a notation for requirements modeling which combines object-
orientation and organization, with an assertional sublanguage
used to specify constraints and deductive rules” [9]. Formal
semantics is given to ORML via a mapping from its descrip-
tions to assertions in first order logic (hereafter FOL). One
thereby obtains facilities for the structuring and organization
of FOL theories. The ontology in ORML distinguishes between
entities, activities, and assertions. The ontology was judged
limited [9] and responses to limitations went in two directions.
RMLs such as KAOS and i* took the direction in which
the ontology remains fixed (i.e., one cannot add or remove
concepts when applying the RML) but include more concepts,
designed to cover concerns such as the desires of the system’s
stakeholders (see below). The other direction was adopted
in Telos [18] and consists of leaving the ontology undefined,
while having in the language the facilities needed to define
the ontology. The second approach is more expressive, but
its abstraction makes it difficult to provide methodological
guidance which can be given when a fixed set of concepts
is known and manipulated every time the language is used.

KAOS: “The overall approach taken in KAOS has
three components: (i) a conceptual model for acquiring
and structuring requirements models, with an associated
acquisition language, (ii) a set of strategies for elaborat-
ing requirements models in this framework, and (iii) an
automated assistant to provide guidance in the acquisition
process according to such strategies.” [5] The conceptual
model specifies the ontology in KAOS, which includes a
considerable number of concepts (object, operation, agent,
goal, obstacle, requisite/requirement/assumption, scenario)
and relations (specialization, refinement, conflict, opera-
tionalization, concern, and so on) [5], [22], [23]. A KAOS

model of requirements instantiates the concepts, relates these
instances, declares instances’ properties which are relevant
to the elaboration/transformation of the model, and allows
the engineer to formally define the instance as a theory of
linear temporal FOL. In light of ORML and specification
languages, KAOS can be understood as an RE methodology
(i.e., a combination of an RML and of methods for the use
of that RML) which is defined on top of linear temporal FOL
that serves as a specification language in KAOS.

I-Star (i*): i* [26], [27] is an RML that distinguishes
itself strongly from those mentioned above both in its design
and its focus. In terms of design, i* is not defined on
top of a specification language. The focus of i* is on the
interdependencies of actors within a socio-technical system,
their individual and joint goals, tasks, and available or
necessary resources, the roles they occupy. A model of
requirements made with i* aims to be a snapshot of the
intentional states of actors, along with what roles they adopt,
and how they depend on each other for the satisfaction
of individual and joint goals, the performance of tasks,
and use of resources. The system-to-be or its components
are actors alongside individuals and groups. In contrast to
both ORML and KAOS, the engineer cannot formally verify
the satisfaction of requirements (i.e., check if a system’s
properties satisfy goals [21]) via an i* requirements model;
the closest the engineer can do is validate them instead via
informal discussion with the stakeholders. It is perhaps this
departure from specification languages as foundations for
RMLs that led to considerable work on i*. It is a lightweight
RML, the non-formal character of which makes it easy
to learn, a critical feature given that requirements must
be validated by stakeholders who cannot be expected to
manipulate artifacts produced with specification languages.

Tropos and Formal Tropos: Tropos [3], a methodology
for information systems engineering, uses i* as its RML at
the very first steps of the RE process, when it is impractical
to start writing formal theories in a variant of FOL or another
formalism. Once i* models of the system-to-be within its
organizational environment are available, Tropos explains
how to proceed towards data and behavior models of the
system-to-be. Formal Tropos [7] continued the tradition of
giving formal semantics to RMLs by mapping instances of i*
concepts and relations between them (i.e., i* requirements
models) to theories of linear temporal FOL. Formal Tropos
argued “that formal analysis techniques are useful during
early development phases. Novelty lies in extending model
checking techniques — which rely mostly on design-inspired
specification languages — so that they can be used for early
requirements modeling and analysis” [7].

IV. DISCUSSION & LIMITATIONS

Techne is an abstract RML intended to be used as the
starting point for the definition of new RMLs applicable to
the early phase of the RE process, when the requirements

problem for the system-to-be and its candidate solutions are
still unclear, and before one candidate solution is singled
out. If an RML is made from Techne, the RML can help
the structuring of the requirements problem and preliminary
identification of candidate solutions thereto, as well as of the
criteria for the comparison of the candidates.

RMLs made from Techne are bound to be quite different
from ORML, KAOS, and Formal Tropos. ORML obtains formal
semantics via the mapping of its models/descriptions to
FOL. In KAOS requirements models, formal definitions of
concept instances have formal semantics via their writing
in linear temporal FOL. In Formal Tropos, instances of i*
concepts are — similarly to KAOS — defined in linear
temporal FOL. ORML and KAOS are object-oriented, featuring
the specialization relation. Techne is not object-oriented
and does not incorporate the specialization relation. It
cannot model conditional preferences. Atoms in Techne
are propositions, and given the purpose of Techne, these
propositions are likely to be written as sentences of natural
language. Techne supports neither the definition of temporal
constraints, nor task sequencing, nor can it distinguish
between domain assumptions which are facts (e.g., laws
of nature) from those which are open to debate. Emphasis
is on straightforward knowledge representation and its use
towards the identification of candidate solutions. That we
limit expressions to being either of the form

∧n
i=1 pli → pl or∧n

i=1 pli → ⊥, means that we cannot state logical disjunction
in Techne. As we have shown throughout the paper, Techne
can, however, represent AND/OR graphs.

Techne and i* differ in several respects. i* has no notion of
conflict, preference or mandatory/optional requirements, no
formal semantics, and thus has no precise notion of what a
candidate solution to the requirements problem is. Alternative
decompositions of a goal are compared in terms of their
contributions to softgoals. Techne keeps softgoals, but due to
the vagueness of softgoal instances [15], [16] we require that
they are approximated, i.e., “refined” by other non-softgoals,
among which preference relations can be added to indicate
which satisfy the softgoal in more desirable ways than others.
Techne includes no concepts pertaining to actors and roles.

Giorgini et al. [8] recognized the need to formalize goal
models so as to automatically evaluate the (degree of)
satisfaction of goals. Their goal models are AND/OR graphs,
in which nodes are goals, and a number of relations is
provided to indicate if the interaction is positive or negative
(i.e., how the satisfaction of a goal influences the satisfaction
of the other goal related to it), as well as to specify the
strength of the interaction. Techne uses preferences to indicate
in the relative degrees of satisfaction (cf., Example II.5), while
quantitative estimates of satisfaction levels are not used. Goal
models from Giorgini et al. do not incorporate the notion
of conflict as inconsistency, they do not include concepts
other than goals, cannot distinguish optional from mandatory
requirements, and have no notion of robust solutions [14].

Techne’s handling of inconsistency is similar in aim
to Hunter & Nuseibeh’s, who are interested in reasoning
on an inconsistent specification and “keeping track of
deductions made during reasoning, and deciding what actions
to perform in the presence of inconsistencies” [12, pp.363–
364], while avoiding trivial deductions from inconsistencies.
An r-net in Techne keeps track of all the deductions made
and inconsistencies (conflicts) are identified. A significant
difference is that their work is based on clausal resolution,
which may lead to ⊥ being derived, but this is prevented
from leading to irrelevant formulas being inferred. In contrast,
Techne addresses directly the identification of maximally
consistent subnets, from which ⊥ cannot be derived.

Techne by its very design avoids asking stakeholders for
quantitative estimates of preference, in contrast to, e.g., the
approach from Liaskos et al. [17]. Preferences are binary
relations, and two preferences cannot be compared in an
r-net itself, but only after the comparison table is constructed.
Techne thereby recognizes that there are different approaches
to decision-making in the presence of multiple criteria and
no ideal decision rules, leaving it to the designer who makes
a new RML from Techne to choose herself the decision rules
to apply on the comparison table. It is not possible in Techne
to indicate the rationale for a preference in an r-net, as
preference nodes cannot appear in domain assumptions.

Techne can be used as the foundation for new CASE tools,
which either define a visual syntax on top of the Techne
backend, or let the user define their own visual syntax. It
is important to note that an RML made from Techne, one
with an appropriately designed visual syntax, will require
its users to know very little, if anything about Techne itself:
they will write models using the visual syntax, the models
will have a Techne form which can then be processed by the
algorithms that can find candidate solutions.

We noted earlier (cf., §II-C6) how a visual syntax can
be defined over Techne. The designer of the RML may also
choose to add new concepts and/or relations on top of Techne.
That they are added “on top” means that every added concept
and relation has no counterpart in the Techne formalization:
e.g., one can add the concept of actor on top of Techne
by defining an actor as a subnet of the r-net; if so, there is
no need to add notions to the formalization of Techne. In
case new concepts/relations require extending Techne itself,
symbols for the new notions must be added to Techne’s
alphabet, their role in grammar, the semantic domain, and
the semantic mappings explained, and finally, effects of the
new notions on the analysis of r-nets must be discussed.

V. CONCLUSIONS

Techne serves to describe requirements problems and
find criteria to compare candidate solutions early on in
the RE process. Choosing a candidate is a separate issue,
one of decision-making in the presence of multiple criteria
and is beyond the scope of this paper. Features such

as object-orientation, predicates, temporal constraints, and
task sequencing are absent, as they serve for the detailed
specification of the chosen candidate solution. Techne thus
precedes and complements RMLs for detailed specification
which do include such features.

More can be said than we did here on how to analyze
preferences and optional requirements in r-nets, as well as
on how to manipulate the information in the comparison
table in order to inform the choice of a solution. Further
ongoing work on Techne focuses on the definition and testing
of efficient reasoning methods for the search of solutions in
r-nets, on tool support for modeling and reasoning, and on
guidelines for how to make new RMLs from Techne.

REFERENCES

[1] J.-R. Abrial, The B-book: assigning programs to meanings.
New York, NY, USA: Cambridge Univ. Press, 1996.

[2] H. Bekic, D. Bjørner, W. Henhapl, C. B. Jones, and P. Lucas,
“On the Formal Definition of a PL/I Subset (Selected parts),”
in Programming Languages and Their Definition - Hans Bekic
(1936-1982). Springer-Verlag, 1984, pp. 107–155.

[3] J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-
driven information systems engineering: the Tropos project,”
Inf. Syst., vol. 27, no. 6, pp. 365–389, 2002.

[4] E. M. Clarke and J. M. Wing, “Formal methods: state of the
art and future directions,” ACM Comput. Surv., vol. 28, no. 4,
pp. 626–643, 1996.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Sci. Comput. Program.,
vol. 20, no. 1-2, pp. 3–50, 1993.

[6] E. Dubois, J. Hagelstein, and A. Rifaut, “Formal Requirements
Engineering with ERAE,” Philips Journal of Research, vol. 43,
no. 3/4, pp. 393–414, 1988.

[7] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso,
“Specifying and analyzing early requirements in Tropos,”
Requirements Eng., vol. 9, no. 2, pp. 132–150, 2004.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,
“Formal reasoning techniques for goal models,” J. Data
Semantics, vol. 1, pp. 1–20, 2003.

[9] S. Greenspan, J. Mylopoulos, and A. Borgida, “On formal
requirements modeling languages: RML revisited,” in Proc.
16th Int. Conf. Software Eng., 1994, pp. 135–147.

[10] S. J. Greenspan, A. Borgida, and J. Mylopoulos, “A require-
ments modeling language and its logic,” Inf. Syst., vol. 11,
no. 1, pp. 9–23, 1986.

[11] S. J. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing
more world knowledge in the requirements specification,” in
Proc. 6th Int. Conf. Software Eng., 1982, pp. 225–234.

[12] A. Hunter and B. Nuseibeh, “Managing inconsistent specifi-
cations: Reasoning, analysis, and action,” ACM Trans. Softw.
Eng. Methodol., vol. 7, no. 4, pp. 335–367, 1998.

[13] D. Jackson, “Boolean Compilation of Relational Specifica-
tions,” MIT, Tech. Rep. MIT-LCS-735, 1997.

[14] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopou-
los, “Techne,” 2010, CSRG-606, Computer Systems Re-
search Group Technical Report, University of Toronto.
ftp://ftp.cs.toronto.edu/pub/reports/csri/606/.

[15] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens, “A more
expressive softgoal conceptualization for quality requirements
analysis,” in Proc. 25th Int. Conf. Conceptual Modelling, 2006,
pp. 281–295.

[16] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
core ontology and problem in requirements engineering,” in
16th IEEE Int. Requirements Eng. Conf., 2008, pp. 71–80.

[17] S. Liaskos, S. McIlraith, and J. Mylopoulos, “Goal-based
Preference Specification for Requirements Engineering,” in
18th IEEE Int. Requirements Engineering Conf., 2010.

[18] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis,
“Telos: representing knowledge about information systems,”
ACM Trans. Inf. Syst., vol. 8, no. 4, pp. 325–362, 1990.

[19] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Require-
ments interaction management,” ACM Comput. Surv., vol. 35,
no. 2, pp. 132–190, 2003.

[20] J. M. Spivey, Introducing Z: A Specification Language and
Its Formal Semantics. Cambridge Univ. Press, 1988.

[21] A. van Lamsweerde, “Goal-oriented requirements engineering:
A guided tour,” in Proc. 5th IEEE Int. Symposium on
Requirements Eng., 2001, p. 249.

[22] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing
conflicts in goal-driven requirements engineering,” IEEE Trans.
Software Eng., vol. 24, no. 11, pp. 908–926, 1998.

[23] A. van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering,” IEEE Trans. Software
Eng., vol. 26, no. 10, pp. 978–1005, 2000.

[24] J. M. Wing, “Writing Larch interface language specifications,”
ACM Trans. Program. Lang. Syst., vol. 9, no. 1, pp. 1–24,
1987.

[25] ——, “A specifier’s introduction to formal methods,” IEEE
Computer, vol. 23, no. 9, pp. 8–24, 1990.

[26] E. Yu, “Towards modeling and reasoning support for early
requirements engineering,” in Proc. 3rd IEEE Int. Symposium
on Requirements Eng., 1997, pp. 226–235.

[27] E. S. K. Yu and J. Mylopoulos, “Understanding ”Why” in
Software Process Modelling, Analysis, and Design,” in Proc.
16th Int. Conf. Software Eng., 1994, pp. 159–168.

[28] P. Zave, “Classification of research efforts in requirements
engineering,” ACM Comput. Surv., vol. 29, no. 4, pp. 315–321,
1997.

[29] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM T. Softw. Eng. Methodol., vol. 6, no. 1, pp.
1–30, 1997.

